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Abstract 

Background: The 1q21.1 distal and 15q11.2 BP1-BP2 CNVs exhibit regional and global 

brain differences compared to non-carriers. However, interpreting regional differences is 

challenging if a global difference drives the regional brain differences. Intra-individual 

variability measures can be used to test for regional differences beyond global differences in 

brain structure.  

Methods: Magnetic resonance imaging data were used to obtain regional brain values for 

1q21.1 distal deletion (n=30) and duplication (n=27), and 15q11.2 BP1-BP2 deletion (n=170) 

and duplication (n=243) carriers and matched non-carriers (n=2,350). Regional intra-

deviation (RID) scores i.e., the standardized difference between an individual’s regional 

difference and global difference, were used to test for regional differences that diverge from 

the global difference.   

Results: For the 1q21.1 distal deletion carriers, cortical surface area for regions in the medial 

visual cortex, posterior cingulate and temporal pole differed less, and regions in the prefrontal 

and superior temporal cortex differed more than the global difference in cortical surface area. 

For the 15q11.2 BP1-BP2 deletion carriers, cortical thickness in regions in the medial visual 

cortex, auditory cortex and temporal pole differed less, and the prefrontal and somatosensory 

cortex differed more than the global difference in cortical thickness.  

Conclusion: We find evidence for regional effects beyond differences in global brain 

measures in 1q21.1 distal and 15q11.2 BP1-BP2 CNVs. The results provide new insight into 

brain profiling of the 1q21.1 distal and 15q11.2 BP1-BP2 CNVs, with the potential to 

increase our understanding of mechanisms involved in altered neurodevelopment.    
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Introduction 

Carriers of certain rare recurrent copy number variants (CNVs) - i.e., deletions or duplications 

of a segment of the genome - have a higher risk of developing psychiatric and 

neurodevelopmental disorders, including schizophrenia and autism spectrum disorder1–5 

Several rare recurrent CNVs have moderate to large effects on structural brain measures 

derived from magnetic resonance imaging (MRI)6,7. The effects of CNVs on brain structure 

have been suggested to occur primarily during early neurodevelopment8, and some rare 

recurrent CNVs have been associated with altered cellular function, composition and size 

derived from cortical organoids that models fetal and early neurodevelopment9–12. The 1q21.1 

distal and 15q11.2 BP1-BP2 deletions are two of the most common recurrent CNVs1,13,14. 

They yield a higher risk of psychiatric and neurodevelopmental disorders1–5 and show 

moderate to large effects on brain structure15,16. Thus, studying 1q21.1 distal and 15q11.2 

BP1-BP2 deletion carriers offer a promising genetics-first approach to study deviations in 

neurodevelopment and brain structure, which may underlie the increased risk of developing 

psychiatric and neurodevelopmental disorders5,8. 

 

To date, the neuroimaging studies on CNVs have focused on conventional mean comparisons 

between carriers and non-carriers, which have been informative for brain profiling of CNV 

carriers. For instance, several CNVs have shown global effects on the brain, as demonstrated 

by group differences in mean cortical thickness, total cortical surface area and total 

subcortical volume, in addition to wide-spread regional differences6,7. However, brain 

profiling may be challenging if an overall global difference on the brain drives many of the 

regional mean differences or if regional differences are driven by distinct subgroups in each 

comparison, rendering inter-regional brain profiles difficult to interpret. To overcome this 
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challenge, detecting brain regions that diverge from the global difference could benefit from 

intraindividual variability measures, in which regional values represent its position within an 

individualized brain profile. Identification of brain regions that diverge from the overall 

global difference of the CNV may provide valuable insights into the regional penetrance, 

brain organization and functional consequences in CNV carriers. Indeed, as has been 

demonstrated in other fields such as cognitive science and neuropsychology, e.g.17–22, novel 

scientific and clinical insights can be achieved by looking beyond mean group differences 

through investigating intraindividual variability.  

 

Both 1q21.1 distal and 15q11.2 BP1-BP2 deletion carriers exhibit global differences in brain 

structure, with the former displaying a lower total cortical surface area15 and the latter 

showing a higher mean cortical thickness and lower total cortical surface area16. Additionally, 

these deletions also exhibit regional differences across the cortex15,16. However, the regional 

differences vary across the brain as indicated by variation in effect sizes across brain regions. 

This could indicate that the carriers of the 1q21.1 distal and 15q11.2 BP1-BP2 deletion 

exhibit higher variability in brain structure, along with systematic inter-regional differences in 

brain structure as measured by MRI-derived features. 

 

In both 1q21.1 distal and 15q11.2 BP1-BP2 CNV carriers, the largest regional differences are 

typically found in frontal regions, associated with higher-cognitive processing. In contrast, the 

posterior brain regions, associated with primary sensory processing, typically do not show 

significant differences15,16. Insight into variation in brain structure may be useful for 

understanding differences in brain function as cortical morphology overlaps with the 

functional hierarchical gradient of the brain23. This functional hierarchical gradient reflects a 

sensorimotor (i.e., involved in unimodal and functional specific processes) to association axis 
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(i.e., involved in higher-order cognitive processes) in the human brain23–25, which has been 

supported by anatomical, functional, and evolutionary data24. Thus, a more fine-grained brain 

profile of the structural differences in 1q21.1 distal and 15q11.2 BP1-BP2 CNV carriers may 

aid our understanding of their phenotypic profile.   

 

Brain structural differences in 1q21.1 distal and 15q11.2 BP1-BP2 CNV carriers indicate 

global mean differences (i.e., cortical thickness and cortical surface area), as well as regional 

group differences in primarily frontal brain regions. The regional group differences indicate 

that some brain regions are more affected than others. Here, we define more affected brain 

regions as regions that differ more than the global mean difference, and less affected brain 

regions as regions that differ less than the global mean difference. To measure this, we use an 

intraindividual variability measure to detect brain regions that diverge from the global 

difference, where the regional values represent its position within an individualized brain 

profile. We expected that anterior regions within the association cortices were more affected, 

whereas posterior regions within the primary sensorimotor cortices were less affected in 

carriers of the 1q21.1 distal and 15q11.2 BP1-BP2 CNVs.   
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Methods and Materials 

Sample 

Individuals carrying a 1q21.1 distal or 15q11.2 CNV and a matched non-carrier group were 

taken from the ENIGMA-CNV working group core dataset and the UK Biobank across 61 

scanner sites. Each CNV carrier was matched with five non-carriers based on age, sex, 

scanner site and ICV using the MatchIt package in R26. This resulted in four subsets (sample 

characteristics are presented in tables 1 and 2, supplementary note 1).  

 

[INSERT TABLE 1 HERE] 

 

[INSERT TABLE 2 HERE] 

 

MRI-derived features, CNVs and quality control      

Neuroimaging data were obtained from the UK Biobank, as described elsewhere27, and from 

the ENIGMA-CNV core dataset. The ENIGMA-CNV neuroimaging measures were collected 

from several sites (see appendix 1 for details) and analyzed using the standardized ENIGMA 

protocol (https://enigma.ini.usc.edu/protocols/imaging-protocols/). Details of the quality 

control of the MR images are provided in supplementary note 2. Briefly, the MRI data from 

the ENIGMA-CNV working group underwent the ENIGMA cortical quality control 

procedures (https://enigma.ini.usc.edu/protocols/imaging-protocols/), where the 68 cortical 

and 14 subcortical regions were extracted using the Desikan-Killiany atlas. For the UK 

Biobank sample, we used the Euler number as a proxy for image quality28 and removed all 

participants with Euler numbers below minus four standard deviations from downstream 

analyses (n =437). To account for site effects in the samples, we ran each of the four subsets 

through ComBat, an instrument for data harmonization29. CNV calling in ENIGMA-CNV was 
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based on previous publications15,16. For the UK Biobank sample, we identified CNVs based 

on the returned dataset from Crawford et al.30 All participants with a CNV as defined in 

previous publications15,16,30 were removed from downstream analyses, except for the 

individuals flagged with the 1q21.1 distal or the 15q11.2 BP1-BP2 CNV. 

 

Derivation of dependent variables 

We adjusted for the effect of age, age2, sex and ICV on every brain regional value using linear 

regression across the carriers and the non-carriers. The residualized brain regional values were 

used to calculate the mean and standard deviation for the non-carriers only. We estimated 1) 

Z-scores per region (similar calculations as in31) and created 2) global index and 3) 

intraindividual standard deviation (similar calculations as in 21) as well as 4) regional intra-

deviation (RID) score.  

 

1. Z-scores. Specifically, Z-scores for CNV carriers and non-carriers were calculated based on 

the mean and standard deviation from the non-carriers as shown in Eq. (1):  

 

𝑍!" =
#𝑋!" −𝑀!"'

𝑆𝐷!"
 

( 1 ) 

Where Zif is the standardized value for brain region i in feature f (i.e., cortical thickness, 

surface area, or subcortical volume), and Xif is the regional value for brain region i for feature 

f, Mif and SDif  represent the mean and standard deviation, respectively, for brain region i 

using feature f across the non-carriers. Thus, for every individual we obtained a vector of 

standardized Z-scores across 68 cortical regions for cortical thickness and cortical surface 

area, and 14 subcortical regions.  
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2. Global index: We created an individualized global index (GI) for cortical thickness, cortical 

surface area and subcortical volume, respectively, by calculating the mean Z-score across the 

cortical and subcortical regions as shown in Eq. (2)  

𝐺𝐼" =	
1
𝑛"
	/𝑍!"

#!

!$%

 

( 2 ) 

where GIf is the global index for feature f, n is the total number of brain regions for feature f, 

and Zif is the standardized value for the brain region I for feature f derived from Eq. (1).  

 

3. Intraindividual standard deviation: Furthermore, we also calculated the intraindividual 

standard deviation (iSD) across the Z-scores for cortical thickness, cortical surface area, and 

subcortical volume to obtain measures of within-individual variability, as shown in Eq. (3): 

𝑖𝑆𝐷" =	1
∑ #𝑍!" − 𝐺𝐼"'

&#!
!$%

𝑛" − 1
 

 

( 3 ) 

where the nf is total number of brain regions for feature f, Zif is the standardized value for 

brain region i for feature f, GIf is the global index for feature f (i.e., mean Z-score across brain 

regions for an individual) as derived from Eq. (2). A low iSD indicates that an individual’s Z-

scores across brain regions are relatively consistent and do not vary much across brain 

regions, while a high iSD indicates that the Z-score across brain regions are relatively 

inconsistent, indexing a more variable brain.  

 

4. Regional intra-deviation score: Finally, to identify regions that diverge more than expected 

from an individual’s global index and intraindividual standard deviation, we created a 
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regional intra-deviation (RID) score calculated using Eq. (4) for every brain region across 

feature f:   

 

𝑅𝐼𝐷" =	
#𝑍!" − 𝐺𝐼"'

𝑖𝑆𝐷"
 

  

( 4 ) 

where the Zif is the standardized value for brain region i for feature f, and GIf is the global 

index for feature f as shown in Eq. (2.). The iSDf reflects the standard deviation for the Z-

score across brain regions in feature f as formulated in Eq. (3). Here, we define regions that 

are less affected as those that do not follow the global tendency in the data, whereas the 

regions that exceed the global tendency of the data are considered to be more affected. To 

establish brain-cognition relationships between the brain measures and cognition, we tested 

for associations between RID and Z-scores and cognitive ability (supplementary note 3, 

Figure S1, Table S1).  

 

Statistical analyses 

All statistical analyses were conducted in R studio v4.0.0 and brain visualizations were 

created using the ENIGMA toolbox32. For the per-CNV analyses, we tested for group 

differences by including carrier status (i.e., either carrier or non-carrier) in a linear regression 

model. The deletion and duplication carriers were tested separately with their corresponding 

matched non-carrier group used as the reference. The estimated standardized beta values were 

extracted from the models and are presented in the results as a measure of effect size. The p-

values underwent a False Discovery Rate (FDR)33 adjustment to account for multiple 

comparisons for each of the four CNV groups. Corrected p-values below .05 were considered 

statistically significant. Three main analyses were performed: First, in line with the 
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conventional mass-univariate analysis approach, we performed group comparisons on the Z-

scores across all the ROIs for cortical thickness, cortical surface area and subcortical volume 

(FDR corrected for 150 comparisons). Second, we compared the global index, and 

intraindividual standard deviation and mean corrected intraindividual standard deviation 

values between carriers and non-carriers (FDR corrected for 12 comparisons). The mean 

corrected intraindividual standard deviation represents the intraindividual standard deviation 

after regressing out the global index, as the mean values tend to be correlated with the 

standard deviation. Third, for the RID scores, group comparisons were computed between 

carriers and non-carriers for all ROIs for cortical thickness, cortical surface area, and 

subcortical volume (FDR corrected for 150 comparisons). Due to missing values in some 

brain regions, the analyses were restricted to individuals with complete observations for the 

feature that was analyzed (i.e., cortical thickness, cortical surface area, and subcortical 

volume). Sensitivity analyses were conducted for the significant RID score differences by 

adjusting for affection status (i.e., known psychiatric or neurological diagnoses). In addition, 

we examined the interaction term between carrier status and affection status and between 

carrier status and cognitive ability. Finally, we compared the brain profile of significant 

differences in RID scores to the significant differences in Z-scores adjusted for the global 

index.  
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Results 

Global measures 

The group differences in the global index and the intraindividual standard deviation measures 

are presented in Table 3 with reference values for the non-carrier groups in Table S2. The 

1q21.1 distal deletion carriers had a lower global index for surface area, whereas the 15q11.2 

BP1-BP2 deletion carriers had a lower global index for surface area and a higher global index 

for cortical thickness. In addition, the 15q11.2 BP1-BP2 duplication carriers had a lower 

global index for cortical thickness. Furthermore, there was a higher intraindividual standard 

deviation for cortical surface for both the 1q21.1 distal duplication carriers (both for the mean 

corrected and uncorrected measure) and the 15q11.2 BP1-BP2 deletion carriers (only for the 

mean corrected measure), as well as a higher intraindividual standard deviation for cortical 

thickness in the 15q11.2 BP1-BP2 deletion carriers (both for the mean corrected and 

uncorrected measure). With one exception, correlations between the intraindividual standard 

deviation measures across CNV groups did not show any significant differences 

(supplementary note 4, Figure S2). 

 

[INSERT TABLE 3 HERE] 

 

1q21.1 distal copy number variant  

The 1q21.1. distal deletion carriers showed widespread lower cortical surface area with 

significant differences in 63 ROIs using Z-scores (Figure 1a-b, top; Table S3), and exhibited a 

higher RID score for cortical surface area in regions within the occipital, superior parietal, 

temporal pole and posterior cingulate cortex, as well as lower RID scores in regions within 

the superior temporal and frontal regions (Figure 1a-c, bottom, Table S4). Further, 1q21.1. 

distal deletion carriers showed higher cortical thickness compared to non-carriers in 19 ROIs 
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using Z-scores (Figure 2a-b, top, Table S3), in addition to lower RID scores for regions within 

the occipital lobe and paracentral lobule and higher RID scores for regions within the superior 

temporal and inferior frontal cortex (Figure 2a-c, bottom, Table S4). The 1q21.1 distal 

deletion carriers also exhibited lower subcortical volume in left thalamus and right nucleus 

accumbens (Table S3), and lower RID score for the left thalamus (Table S4). All the 

significant RID score differences survived adjustment for affection status. The interaction 

term between carrier status and affection status was not associated with the significant RID 

scores (supplementary note 5, Table S5). A subset of the significant RID scores were 

implicated in the brain-cognition RID map (Figure S1). However, we did not observe any 

significant interactions between carrier status and cognitive ability on any of the significant 

RID scores (supplementary note 6, Table S6). The results yielded more significant group 

differences in RID scores (i.e., 24) compared to Z-scores adjusted for the global index 

between 15q11.2 BP1-BP2 deletion carriers and non-carriers (i.e., 13, supplementary note 7, 

Figure S3, Table S7). The 1q21.1 distal duplication carriers showed higher cortical surface 

area in the right pars opercularis and right superior frontal gyrus, and lower volume in the 

right and left hippocampus compared to non-carriers (Table S8). Using RID scores, no 

significant differences in the ROIs were found (Table S9).  

 

[INSERT FIGURE 1 HERE] 

 

[INSERT FIGURE 2 HERE] 

 

15q11.2 BP1-BP2 copy number variant  

The 15q11.2 BP1-BP2 deletion carriers showed lower cortical surface area in 10 ROIs using 

Z-scores (Figure 3a-b, top, Table S10), and higher RID scores for the left frontal pole and 
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right pars opercularis surface area, but lower RID scores for the left and right pars orbitalis 

surface area compared to non-carriers (Figure 3a-c, bottom, Table S11). For cortical 

thickness, the 15q11.2 BP1-BP2 deletion carriers showed higher cortical thickness in 30 

regions using Z-scores (Figure 4a-b, top, Table S10). The RID scores for cortical thickness 

were lower in regions within occipital and temporal regions, and higher in motor and frontal 

regions compared to non-carriers (Figure 4a-c, bottom, Table S11). The 15q11.2 BP1-BP2 

deletion carriers also showed lower Z-scores for left caudate, right pallidum and right nucleus 

accumbens (Table S10). All significant RID scores remained significant after adjustment for 

affection status. No significant interactions between carrier status and affection status (Table 

S12, supplementary note 5) nor between carrier status and cognitive ability for the 15q11.2 

BP1-BP2 deletion carriers were observed (Table S13, supplementary note 6). The results 

yielded more significant group differences in RID scores (i.e., 14) compared to Z-scores 

adjusted for global index (i.e., 12) between 15q11.2 BP1-BP2 deletion carriers and non-

carriers (supplementary note 7, Figure S4, Table S14). The 15q11.2 BP1-BP2 duplication 

carriers showed lower cortical thickness in 11 ROIs and higher right superior frontal cortical 

surface area using Z-scores (Table S15) but showed no significant differences in the ROIs 

using RID-scores (Table S16).  

 

[INSERT FIGURE 3 HERE] 

 

[INSERT FIGURE 4 HERE] 
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Discussion 

The current study is the first to identify intraindividual variability differences in brain 

structure in CNV carriers. Using the intraindividual standard deviation measure, we observed 

higher variability in the regional effects for cortical surface area in both 1q21.1 distal 

duplication and 15q11.2 BP1-BP2 deletion carriers, and higher variability in the regional 

effects for cortical thickness for the 15q11.2 BP1-BP2 deletion carriers, compared to non-

carriers. Using RID scores, we find that a subset of brain regions diverged significantly from 

non-carriers for both the 1q21.1 distal and 15q11.2 BP1-BP2 deletion carriers. We also find a 

higher number of significant regional differences using RID scores compared to the 

conventional global covariation approach. The current results hold promise for identifying 

specific CNV-associated brain profiles by targeting regional differences using an 

individualized approach, which are overlooked in studies applying conventional brain MRI 

measures. 

 

In line with previous results15, the 1q21.1 distal deletion carriers showed lower global cortical 

surface area compared to non-carriers. The observed differences in Z-scores indicate 

widespread lower cortical surface area, whereas the RID scores indicate that the cortical 

surface area in posterior and primary sensory regions (i.e., lingual, pericalcarine, superior 

parietal, isthmus of the cingulate gyrus) are less affected and frontal and association cortices 

(i.e., caudal middle frontal, lateral orbitofrontal, rostral middle frontal, superior frontal cortex) 

are more affected. Thus, the observed regional Z-score group differences along lateral and 

medial parietal to lateral inferior temporal and motor cortex appear to be largely reflective of 

the global effect. A subset of the significant RID scores (i.e., the superior temporal gyri and 

left supramarginal gyrus cortical thickness and left lateral orbitofrontal and left lateral 
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superior temporal gyrus cortical surface area) was associated with cognitive ability in non-

carriers. However, the effect sizes are low, and the current sample size of CNV carriers is too 

small to reliably detect such brain-cognition associations. 

 

The 15q11.2 BP1-BP2 deletion showed a higher global cortical thickness compared to non-

carriers, primarily concentrated in the frontal cortex, recapitulating previously reported group 

differences in cortical thickness16. We complement these findings by showing group 

differences in RID scores, which indicates that the cortical thickness in sensory cortices (i.e., 

cuneus and pericalcarine area) are less affected, and the association cortices (i.e., rostral 

middle frontal and superior frontal cortex) are more affected by the deletion. The association 

cortices that show cortical thickness differences using RID scores are regions that underlies 

complex cognitive functions23–25, and may subserve the lower cognitive performance in 

15q11.2 BP1-BP2 deletion carriers compared to controls14,34.  

 

Notably, some findings deviate from the interpretation of a less affected sensorimotor cortex 

and a more affected association cortex. Both the 1q21.1 distal and 15q11.2 BP1-BP2 deletion 

carriers show evidence for a relatively less affected cortical surface area and cortical 

thickness, respectively, in the left temporal pole. We also find that the cortical thickness of the 

postcentral gyri, a primary somatosensory region, is more affected in the 15q11.2 BP1-BP2 

deletion carriers. To speculate, this may be associated with the motor delay observed in 

clinically affected 15q11.2 BP1-BP2 deletion carriers35. For cortical surface area in the 

15q11.2 BP1-BP2 deletion carriers, we find inconsistent effects for frontal regions: although 

we observe a relatively more different bilateral pars orbitalis, we also find evidence for a less 

different left frontal pole and right pars opercularis. Furthermore, we did not find significant 

differences in RID scores in the 15q11.2 BP1-BP2 duplication carriers, nor in the 1q21.1 
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distal duplication carriers. The results complement previous findings of lower effect sizes in 

brain measures for duplication versus deletion carriers6,7, and thus may support that deletion 

carriers distort the anatomical relationships in the brain more than duplication carriers. 

 

Global and frontal regional group differences in cortical thickness are prominent brain 

features of several neurodevelopmental disorders, including autism spectrum disorder36 and 

schizophrenia37. Thus, group differences in brain structure may be confounded by individuals 

with neurodevelopmental or psychiatric disorders. Here, all the significant RID score 

differences in 1q21.1 distal and 15q11.2 BP1-BP2 deletions survived adjustment for affection 

status, and there were no interaction effects between carrier status and affection status on the 

significant RID scores. 

 

The current results implicate novel mechanisms in neurodevelopment. Compelling candidates 

for the changes in the 1q21.1 distal CNV are the human specific NOTCH2NL genes, 

which have been linked to the evolutionary expansion of the human neocortex38,39. NOTCH 

signaling is important for outer radial glia cell self-renewal, which are thought to contribute to 

cortical expansion40. Deletion of the NOTCH2NL genes in human cortical organoids yields 

smaller organoids compared to controls38 and NOTCH2NL increases the number of cycling 

basal progenitors in the mouse embryonic neocortex41. Thus, NOTCH2NL could yield a 

potential mechanistic link between the assumed lower gene expression levels in 1q21.1 distal 

deletion carriers and the lower cortical surface area, possibly important for the expansion of 

frontal regions.  

 

Among the four genes in the 15q11.2 BP1-BP2 loci42, CYFIP1 has gained considerable 

interest due to its association to schizophrenia43,44 and autism45–47. CYFIP1 exhibits high 
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expression levels in the developing mouse brain47. CYFIP1 has also been linked to variation 

in cortical surface area48, as well as various cellular phenotypes, including myelination49, 

neurite length and branch number, cell size50, dendritic spine formation51 and regulation of 

radial glia cells52. Notably, CYFIP1 haploinsufficiency lower myelination thickness in rats49. 

Cortical thickness, as estimated with MRI, has been suggested to be influenced by 

myelination53. Thus, the higher cortical thickness observed in 15q11.2 BP1-BP2 deletion 

carriers may be due to altered myelination in the brain, possibly with somatosensory cortex 

being particularly sensitive to these alterations. CYFIP1 deficiency has also been associated 

with functional connectivity deficits in motor cortices, as well as aberrant motor coordination 

in mice54. Finally, it should be noted that the 1q21.1 distal and the 15q11.2 BP1-BP2 loci span 

several genes, and genes within CNVs are likely to be involved in multifaceted genetic 

interactions55. More research is needed to identify the causative biological mechanisms of the 

brain structural phenotypes.  

 

This study has strengths and limitations. We use an intraindividual variability approach to 

examine brain metrics that are related to an individual’s own inter-regional brain profile. By 

examining metrics that consider the variation within individuals, it is possible to map the 

heterogeneity and deviations in CNV carriers compared to non-carriers. However, variability 

measures should be interpreted with caution, as some effects on the brain may be so extreme 

that further deviations are unlikely to be observed. That is, CNVs may yield large effects on 

brain structure, but only to a certain extent due to biological constraints. Thus, we urge 

caution when interpreting intraindividual standard deviation in brain measures as ceiling and 

floor effects may bias the variability metrics. Still, we identify structures that are significantly 

less different or more different relative to the mean difference, indicating sufficient variability 

in the individualized brain metrics. About 1/2 (1q21.1 distal) and 2/3 (15q11.2 BP1-BP2) of 
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the carriers are derived from the UK Biobank, which has a healthy volunteer bias56, possibly 

yielding underestimations of brain structural differences. However, this is somewhat counter-

balanced by the ENIGMA-CNV dataset that is likely to increase the heterogeneity in the 

study sample (although some datasets are likely to have similar bias towards healthy 

individuals as the UK Biobank). Indeed, the variability observed in brain structure within 

individuals underscores the heterogeneity between and within individuals in the sample. 

Future studies with larger sample sizes are needed to examine the phenotypic heterogeneity 

observed in CNV carriers.  

 

The results of the current study aid our understanding of 1q21.1 distal and 15q11.2 BP1-BP2 

CNV brain profiles by identifying regional differences using intraindividual variability 

metrics, which has the potential to give better insight into the neuronal mechanisms in 

neurodevelopment and risk for psychiatric diseases. We find evidence for regional differences 

beyond the global differences in brain structure, where the spatial effects partly support the 

hypothesis of less affected sensorimotor cortex and more affected association cortex in both 

the 1q21.1 distal and 15q11.2 BP1-BP2 deletion carriers.  
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Figure 1. Cortical surface area comparison between 1q21.1 distal deletion carriers and 

non-carriers. A) Top panel shows z-scores - group differences in regional cortical surface 

area. Bottom panel shows RID-scores - group differences in regional cortical surface area that 

are scaled to the individual’s own global index. Non-carriers are represented by gray lines, 

and 1q21.1 distal deletion carriers are represented by black lines. Blue dots indicate 

significant differences. The insular cortex is included under frontal cortex for visualization 

purposes. B) Top panel displays the significant differences in Z-scores, and the bottom panel 

shows the significant differences in RID-scores. Blue-red diverging maps represent the effect 

size. C) Spatial distribution of all the mean differences in RID scores. Please note that all 

values are shown regardless of significance. Yellow-purple diverging maps represent the 

direction of the mean differences. Increased yellow intensity represents values that are less 

deviant than the overall global mean difference in cortical surface area, and increased purple 

intensity represents values that are more deviant than the overall global mean difference in 

cortical surface area. Z- and RID-scores are based on raw values adjusted for age, age2, sex, 

and intracranial volume on site harmonized data. 

 

Figure 2. Cortical thickness comparison between 1q21.1 distal deletion carriers and non-

carriers. A) Top panel shows z-scores - group differences in regional cortical thickness. 

Bottom panel shows RID-scores - group differences in regional cortical thickness that are 

scaled to the individual’s own global index. Non-carriers are represented by gray lines, and 

1q21.1 distal deletion carriers are represented by black lines. Blue dots indicate significant 

differences. The insular cortex is included under frontal cortex for visualization purposes. B) 

Top panel displays the significant differences in Z-scores, and the bottom panel shows the 

significant differences in RID-scores. Blue-red diverging maps represent the effect size. C) 

Spatial distribution of all the mean differences in RID scores. Please note that all values are 
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shown regardless of significance. Yellow-purple diverging maps represent the direction of the 

mean differences. Increased yellow intensity represents values that are less deviant than the 

overall global mean difference in cortical thickness, and increased purple intensity represents 

values that are more deviant than the overall global mean difference in cortical thickness. Z- 

and RID-scores are based on raw values adjusted for age, age2, sex, and intracranial volume 

on site harmonized data. 

 

Figure 3. Cortical surface area comparison between 15q11.2 BP1-BP2 deletion carriers 

and non-carriers. A) Top panel shows z-scores - group differences in regional cortical 

surface area. Bottom panel shows RID-scores - group differences in regional cortical surface 

area that are scaled to the individual’s own global index. Non-carriers are represented by gray 

lines, and 15q11.2 BP1-BP2 deletion carriers are represented by black lines. Blue dots 

indicate significant differences. The insular cortex is included under frontal cortex for 

visualization purposes. B) Top panel displays the significant differences in Z-scores, and the 

bottom panel shows the significant differences in RID-scores. Blue-red diverging maps 

represent the effect size. C) Spatial distribution of all the mean differences in RID scores. 

Please note that all values are shown regardless of significance. Yellow-purple diverging 

maps represent the direction of the mean differences.  Increased yellow intensity represents 

values that are less deviant than the overall global mean difference in cortical surface area, 

and increased purple intensity represents values that are more deviant than the overall global 

mean difference in cortical surface area. Z- and RID-scores are based on raw values adjusted 

for age, age2, sex, and intracranial volume on site harmonized data. 

 

Figure 4. Cortical thickness comparison between 15q11.2 BP1-BP2 deletion carriers and 

non-carriers. A) Top panel shows z-scores - group differences in regional cortical thickness. 
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Bottom panel shows RID-scores - group differences in regional cortical thickness that are 

scaled to the individual’s own global index. Non-carriers are represented by gray lines, and 

15q11.2 BP1-BP2 deletion carriers are represented by black lines. Blue dots indicate 

significant differences. The insular cortex is included under frontal cortex for visualization 

purposes. B) Top panel displays the significant differences in Z-scores, and the bottom panel 

shows the significant differences in RID-scores. Blue-red diverging maps represent the effect 

size. C) Spatial distribution of all the mean differences in RID scores. Please note that all 

values are shown regardless of significance. Yellow-purple diverging maps represent the 

direction of the mean differences. Increased yellow intensity represents values that are less 

deviant than the overall global mean difference in cortical thickness, and increased purple 

intensity represents values that are more deviant than the overall global mean difference in 

cortical thickness. Z- and RID-scores are based on raw values adjusted for age, age2, sex, and 

intracranial volume on site harmonized data.
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